

# **STEM Sims**

## **Lesson 2: Getting Down to the Hard Facts**

Substances differ in their hardness. Some materials, like diamonds, are extremely hard, while others, such as mica, are fairly soft. The Mohs Hardness Scale is a way to compare the relative hardness of materials. Are you ready to do some scratching?

### **Doing the Science**

- Start the Buckyball Simulation by clicking on the "Sim" tab. 1.
- 2. Click on the fullerene ( $C_{60}$ ) container and drag a chunk to the Mohs Hardness Tester.
- 3. Note and record in Table 1 the hardness of the fullerene.
- Click the "Reset" button at the bottom of the screen. 4.
- 5. Click on the fullerene (C<sub>60</sub>) container and drag a chunk to the blue Hydraulic Press located on the right side of the screen.
- 6. Click the "On" button to start the press.
- 7. Note and record in Table 1 the amount of volume compression experienced by the fullerene sample.

#### **Table 1. Fullerene Hardness and Compression Data**

| Sample    | Mohs Hardness Value | Volume Compression Value (%) |
|-----------|---------------------|------------------------------|
| Fullerene |                     |                              |

### **Do You Understand?**

- Use available resources to look up a table of Mohs Hardness Values for common substances. 1. Which substance has a similar hardness to fullerene?
- 2. Is fullerene harder or softer than quartz? Please explain your response.
- 3. Use Table 2 below to rank fullerene's ability to have its volume reduced when compressed.

| Substance | Volume After Compression by Press (% of Initial Volume Remaining) |
|-----------|-------------------------------------------------------------------|
| Nylon     | 40                                                                |
| Bone      | 85                                                                |
| Lead      | 90                                                                |
| Bronze    | 95                                                                |
| Gold      | 98                                                                |
| Steel     | 99                                                                |